StrainGE

Lucas van Dijk, Bruce Walker, Tim Straub, Colin Worby, Alexandr:

Sep 29, 2023

A toolkit to track and characterize low-abundance strains using metagenomic data
Installation

Usage

Citation

Indices and tables

CONTENTS

29

31

CHAPTER
ONE

A TOOLKIT TO TRACK AND CHARACTERIZE LOW-ABUNDANCE
STRAINS USING METAGENOMIC DATA

StrainGE is a set of tools to analyse conspecific strain diversity in bacterial populations. It consists of two main com-
ponents: 1) Strain Genome Search tool (StrainGST), a tool to find close reference genomes to strain(s) present in a
sample and 2) Strain Genome Recovery (StrainGR), a tool to perform strain-aware variant calling at low coverages,
which in turn can be used to track strains across samples.

a)

Sample
. i reads
Genus/species wide
database of high quality
reference genomes Metrics
-
—-_— train T > i SNVs
StrainGS StrainGR
Gaps
b) StrainGST identifies close reference genomes to c) Reads are aligned to a concatenated reference
strains in a sample containing the references reported by StrainGST
Shared genome content
Select for k-mers of interest R
e Strain 2
Sample R2
k-mers
Strain 3
Strain 1 R3
Iteratively score reference genomes based on StrainGR analyzes pileups of short read
k-mers present and report best matching reference alignments to call genetic variation
SNP l\lllulti-allelic Weak call
’ ' Su | Ref confirmed !
© |
o
Co alloall [n
¢ / Reference Position Reference allele
Report Report Report
reference 1 reference 2 reference 3
StrainGR detects large coverage gaps suggestive
Discard k-mers from matching reference after each iteration of alarge deletion
and repeat until insuffiecient k-mers left o
=3 Gap
5 >
3
[$)
Reference

StrainGE

2 Chapter 1. A toolkit to track and characterize low-abundance strains using metagenomic data

CHAPTER
TWO

INSTALLATION

StrainGE requires Python >= 3.7 and depends on the following packages:

NumPy
SciPy
matplotlib
scikit-bio
pysam
h5py

intervaltree

These packages will be automatically installed when installing through pip.

2.1

Install through pip

pip install strainge

Make sure numpy is already installed before installing StrainGE.

2.2

1.

2.

3.

Install from bioconda

Create a new conda environment and activate it

conda create -n strainge python=3.9
source activate strainge

Add bioconda and conda-forge channels

conda config --add channels bioconda
conda config --add channels conda-forge

Install StrainGE

conda install strainge

Tip: also consider installing Mamba for much faster conda operations.

https://github.com/mamba-org/mamba

StrainGE

2.3 Install manually from github

1. Clone the repository
git clone https://github.com/broadinstitute/StrainGE

2. Install StrainGE

cd StrainGE
python setup.py install

4 Chapter 2. Installation

CHAPTER
THREE

USAGE

3.1 StrainGST database creation

3.1.1 1. Download high quality reference genomes for your genus/species of inter-
est

This tutorial assumes you have activated the strainge conda environment. The first step is to obtain high quality refer-
ence genomes for your genus or species of interest, any method suffices. We’ve found the tool ncbi-genome -download
useful, and will use that tool for this step.

For example, to download all Escherichia genomes:

mkdir ref_genomes
ncbi-genome-download bacteria -1 complete -g Escherichia,Shigella -H -F all \
-0 ref_genomes

The -H flag automatically organizes all downloaded files in a nice human -readable folder structure. Besides down-
loading references, this command downloads all associated metadata like gene annotations too, which is useful for
downstram analyses.

Next, we organize all references in a single directory using a script available in the bin/ directory of this repository:
prepare_strainge_db.py. This script serves two main purposes: 1) it organizes all references in a single directory,
2) it optionally splits chromosomes and plasmids into separate files. When tracking strains we’re usually more interested
in tracking the chromosome, and we don’t want StrainGST to report a strain as present because it shares a plasmid
(although its algorithm should already prevent most of those cases.)

So download the prepare_strainge_db.py script to your analysis folder, and run it as follows:

mkdir strainge_db
python3 prepare_strainge_db.py ref_genomes/human_readable -s \
-0 strainge_db > strainge_db/references_meta.tsv

The -s flag enables splitting chromosomes and plasmids. The file references_meta. tsv contains metadata on each
reference (for example its accession no.)

https://github.com/kblin/ncbi-genome-download
https://github.com/broadinstitute/StrainGE/blob/master/bin/prepare_strainge_db.py

StrainGE

3.1.2 2. K-merize your reference sequences

Next, we k-merize each genome:

for f in strainge_db/*.fa.gz; do straingst kmerize -o ${f%.fa.gz}.hdf5 $f; done;

These steps can run in parallel, so use your favorite parallelization method if desired (e.g., cluster task array, GNU
parallel).

The syntax ${f%.fa.gz} removes the .fa.gz extension from the filename in $f, thus the output filename for each
kmerset HDF5 will follow the format REF_NAME .hdf5. StrainGE will infer the strain name from the HDFS5 filename
in the steps below, thus by removing the . fa.gz extension we remove clutter.

3.1.3 3. Compare the k-mer sets and cluster similar references

The goal of StrainGST is to identify close reference genomes to strains present in a sample. These reference genomes
are in turn used for variant calling and sample comparisons. Here lies a trade-off: the reference genome should be close
enough for accurate variant calling, but sample comparisons are more easy to perform when the variant calling step is
done using the same reference genome, so you don’t want to be too specific. Furthermore, limiting the database size
reduces computational time. The database of reference genomes should cover the diversity of the species of interest
but not contain too many highly similar genomes. Therefore a clustering step is performed to reduce redundancy in the
database.

We remove redundant reference genomes two ways:

1. Remove reference genomes that are a near perfect subset of another genome. An example of this is an E. coli
strain used for synthetic biology applications that was basically a K-12 strain with many genes removed.

2. Cluster closely related genomes based on k-mer similarity and pick one representative.

To do this, we need to compute the pairwise similarities between k-mer sets, and a metric to identify whether a k-mer
set is a subset of another. Both can be obtained using straingst kmersim.

straingst kmersim --all-vs-all -t 4 -S jaccard -S subset strainge_db/*.hdf5 >.
—similarities.tsv

This command produces as tab separated file, where each line contains a pair of k-mer sets with their accompanying
similarity scores. With the -S flag we enable which scoring metrics to calculate, and in this case we enable the Jaccard
similarity and the subset score. The output file contains for each pair of k-mer sets the requested scores, sorted by the
first scoring metric (in our case the jaccard similarity). With the parameter -t you specify the number of processes to
spawn, to allow for parallel computation of these pairwise similarities.

We can now cluster our references using the straingst cluster command.

straingst cluster -i similarities.tsv -d -C 0.99 -c 0.90 \
--clusters-out clusters.tsv \
strainge_db/*.hdf5 > references_to_keep.txt

The cluster command reads our previously created file similarities.tsv to determine which references to keep.
The first step is to discard any genome where more than 99% of its kmers are present in another genome, as enabled by
-d and -C 0.99. Afterwards, we cluster similar genomes based on the Jaccard similarity between k-mersets: if the
Jaccard similarity between two k-mer sets is higher than 0.90 (-c 0.90), those two genomes will be clustered together
(approximate ANI: ~99.8%). For each cluster we pick one representative genome: the genome with the smallest mean
distance to the other cluster members. Each genome to keep is written to references_to_keep. txt. With the option
--clusters-out we specify another file where we write the clustering results. Each line in this file specifies a cluster
along with its entries, separated by a tab. The genomes in the first column represent the cluster representatives. This
option is optional, but can be useful for debugging purposes.

6 Chapter 3. Usage

StrainGE

3.1.4 4. Create pan-genome k-mer database

Using our list of references, we finally create a single database file which will contain all k-mers of the given references.

straingst createdb -f references_to_keep.txt -o pan-genome-db.hdf5

Now our database lives in the file pan-genome-db.hd£5, created from reference sequences read from the file given
by -£.

It is also possible to give the list of k-mer sets to include in the database as positional arguments, like in the following
example:

straingst createdb -o pan-genome-db.hdf5 refl.hdf5 ref2.hdf5 ...

Combining the two methods described above works too.

3.2 Running StrainGST

Identify close reference genome(s) to strain(s) in a sample.

3.2.1 Prerequisites

1. A pre-built database for the genus or species of interest

2. A whole metagenomic sequencing (WMS) sample

3.2.2 Usage

1. K-merize the sample reads
StrainGST iteratively compares the k-mer profiles of references in the database to the k-mers in the sample to identify
close reference genomes to strains in a sample.

Our first step is to kmerize the sample reads. For example, if you have a FASTQ file named patientl. fastq with all
reads, then we generate its corresponding k-mer set as follows:

straingst kmerize -k 23 -o patientl.hdf5 patientl.fastq

Similar to the first step of the database creation section, this will generate a HDF5 file named patient1.hdf5 with
all k-mers and their corresponding counts. Make sure the value of k is the same as used in the database creation step.

You can specify multiple FASTQ files to the command above, which is useful if you have paired-end reads. Further-
more, it will also automatically decompress gzipped files. For example, if you have gzipped paired-end FASTQ files,
then the following command also works:

straingst kmerize -k 23 -o patientl.hdf5 \
patientl.1.fastq.gz patientl.2.fastq.gz

3.2. Running StrainGST 7

StrainGE

2. Run StrainGST

We can now run straingst run with our database HDF5 and our sample HDF5:

straingst run -o results.tsv pan-genome-db.hdf5 patientl.hdf5
This will output a tab separated values (tsv) file, containing statistics about the sample k-mer set and a list of identified
reference strains with accompanying metrics.

New in version 1.3: instead of writing both sample statistics and the identified strains to a single TSV file, which is
generally not as easily read in Python’s pandas or R, you can now enable the option to write sample statistics and
strains to separate files when enabling the --separate-output (-0) option. If enabling this option, use -o to specify
the output filename prefix.

Example:

straingst run -0 -o PREFIX pan-genome-df.hdf5 patientl.hdf5

This will result in two files: PREFIX.stats.tsv (sample statistics), and PREFIX.strains.tsv (list of identified
strains).

3.2.3 Output file description

Example output (single file output)

sample totalkmers distinct pkmers pkcov pan%

UMB11_01 2277023860 380759656 50090 6.984 1.536

i strain gkmers ikmers skmers cov kcov ~gcov acct even .
—,Spec rapct wscore score

0 Esch_coli_NGF1 49631 49622 50090 0.985 7.009 6.831 0.980 0.987 .

—1.000 1.507 0.940 0.940

Example output (separate file output; new in version 1.3)

PREFIX.stats.tsv

sample totalkmers distinct pkmers pkcov pan%
UMB11_01 2277023860 380759656 50090 6.984 1.536

PREFIX.strains.tsv

i strain gkmers ikmers skmers cov kcov gcov acct even .
—,Spec rapct wscore score
0 Esch_coli_NGF1 49631 49622 50090 0.985 7.009 6.831 0.980 0.987 _

—1.000 1.507 0.940 0.940

8 Chapter 3. Usage

StrainGE

Sample statistics

The first two lines contain statistics on the whole sample.
Columns:
* sample: Sample name, derived from the k-mer set filename
* totalkmers: total number of k-mers counted in the sample, including k-mers that occur multiple times
e distinct: total unique number of k-mers
» pkmers: total unique number of k-mers that are also present in the database
* pkcov: average “coverage” (multiplicity) of each unique k-mer in the sample that is also present in the database.

* pan%: total number of k-mers (including duplicates) that are present in both the sample and database divided
by the total number of k-mers in the sample (totalkmers), i.e. an estimation of the relative abundance of the
species/genus of interest in this sample.

Reference strain statistics

The next lines contain the close reference genomes identified by StrainGST.
Columns:
* i: Iteration number
* strain: Reference strain name
» gkmers: Total number of unique k-mers in the original reference genome (or its fingerprint).

e ikmers: Remaining unique k-mers in the genome after discarding k-mers excluded in an earlier iteration or be-
cause their average coverage was too high

 skmers: Remaining unique k-mers from the sample

* cov: Breadth of coverage of this reference, i.e. what fraction of k-mers in the reference is also present in the
sample

* kcov: Average depth of coverage of k-mers both present in the reference and in the sample
* gcov: Average depth of coverage of all k-mers in the reference
* acct: What fraction of the sample k-mers can be explained by this reference?

* even: Evenness of coverage. A value close to 1 indicates that the coverage is evenly distributed along the genome,
a value close to zero indicates that only a small part of the genome is well covered.

* spec: Obsolete
* rapct: Estimated strain relative abundance (relative to the whole sample).
* wscore: Obsolete

* score: Score used to rank each reference in the database at each iteration. A high score represents high confidence
in this prediction. Scores cannot be compared across iterations or across samples, and it is possible that a strain
in a second iteration has a higher score than the strain in the first iteration.

3.2. Running StrainGST 9

StrainGE

3.2.4 Tips and Tricks

Easily parse StrainGST file in Python (mainly useful for single file output):

from strainge.io.utils import parse_straingst
results = ['samplel.tsv', 'sample2.tsv']

for sample in results:
print('#', sample)
with open(sample) as f:
for strain in parse_straingst(f):
print(strain) # strain is a dict with above columns

With sample statistics:

from strainge.io.utils import parse_straingst
results = ['samplel.tsv', 'sample2.tsv']

for sample in results:
print('#', sample)
with open(sample) as f:
straingst_iter = iter(parse_straingst(f, return_sample_stats=True))
sample_stats = next(straingst_iter)
print(sample_stats)

for strain in straingst_iter:
print(strain) # strain is a dict with above columns

3.3 Running StrainGR

Characterize strains in a metagenomic sample.

3.3.1 Prerequisites

* StrainGST results on one or more samples

* Directory containing the reference genomes used to create the StrainGST database
* BWA-MEM

e Mummer4

» Optional: Picard (for MarkDuplicates)

10 Chapter 3.

Usage

StrainGE

3.3.2 Usage

1. Prepare a concatenated reference FASTA with straingr prepare-ref

Our strategy to deconvolve strains in a mixture sample is to create a FASTA containing a close reference genome for
each strain present in a sample, and then aligning the sample reads to this concatenated FASTA file. StrainGR provides
a tool straingr prepare-ref to automatically create and analyze a concatenated reference genome from a list of
StrainGST result files.

By including multiple reference genomes into a single FASTA file, reads with an allele specific to a strain will be
placed to the optimal location in the concatenated reference. On the other hand, the reference genomes included in the
concatenated reference may share (conserved) parts of their genome because they are the same species, and an aligner
will be unable to unambiguously place reads in those regions. This is a trade-off: include as many reference genomes
as required to deconvolve strains in a sample, without combining too closely related reference genomes such that they
share a vast chunk of their genomes. StrainGR will not call variants in shared regions.

The prepare-ref subcommand aids in building a concatenated reference from StrainGST result files. It determines
which strains have been reported by StrainGST, and performs another clustering step on the reported strains to ensure the
included reference strains are not too closely related. For example, sometimes it happens that a patient has a strain that’s
somewhat in the middle between two reference genomes sitting next to each other on the tree. Due to stochasticity in
sequencing, StrainGST may report one reference genome in one sample, while reporting the other reference in another
sample with the same strain, but taken at a different time point. Here the clustering step ensures that only one of these
two closely related strains gets included in the concatenated reference.

After concatenating the selected references, prepare-ref runs nucmer from the MUMmer toolkit to estimate how
“repetitive” the concatenated reference is, i.e. how much sequence do the genomes concatenated share, by computing
maximal exact matches of at least a configurable size within the concatenated reference. By default the minimum exact
match size is 250 bp, but its recommended to change this value to the average insert size of the sample read set to most
accurately estimate the actual repetitiveness. These estimates are used to normalize strain abundances in a later step.

To create a concatenated reference, use straingr prepare-ref as follows:

straingr prepare-ref -s path/to/straingst/*.tsv \
-p "path/to/refdir/{ref}.fa.gz" \
-S path/to/straingst_db/similarities.tsv
-0 refs_concat. fasta

We give multiple StrainGST TSV result files to prepare-ref with the -s flag. Usually these are all StrainGST results
file belonging to a single patient, or an other related set of samples. Next, we need to specify how prepare-ref can
find the actual FASTA files belonging to strains reported by StrainGST, this is done using the “path-template” switch
-p: in this given path “{ref}” will be replaced by StrainGR (so don’t replace it yourself) with the actual strain name.
Don’t forgot to use quotes, because { and } are special characters in many shells. We specify the similarities.tsv file
created at the StrainGST database construction step, to reuse the calculated k-mer similarities again for clustering. The
resulting concatenated reference will be written to refs_concat. fasta.

New in version 1.3: If you use the new split StrainGST output format introduced in version 1.3, only specify the
files listing the predicted strains. So, replace straigr prepare-ref -s path/to/straingst/*.tsv ... with
straingr prepare-ref -s path/to/straingst/*.strains.tsv

3.3. Running StrainGR 11

https://github.com/mummer4/mummer

StrainGE

2. Align reads to the reference

StrainGR is built to be used with bwa mem, as it uses the supplied information on alternative alignment locations
encoded in the XA SAM tag to deal with shared regions introduced by concatenating reference genomes.

The following command aligns the reads with bwa mem and outputs a sorted BAM file:

bwa mem -I 300 -t 2 refs_concat.fasta samplel.l.fq.gz samplel.2.fq.gz \
| samtools sort -@ 2 -0 BAM -o samplel.bam -

Also create BAM index
samtools index samplel.bam

We specify a fixed insert size to bwa mem, because if the species of interest in a metagenomic sample is at low abun-
dance, there may be not enough reads per batch for bwa mem to infer the mean insert size, and reads in such a batch
will be marked as improperly paired. Optionally you can run picard MarkDuplicates on your alignment file.

3. Analyze read alignments to call variants

To call any variants in your sample run the StrainGR variant caller:

straingr call refs_concat.fasta samplel.bam --hdf5-out samplel.hdf5 --summary samplel.
—tsv --tracks all

All variant calling data will be stored in the given HDFS5 file samplel.hdf5. A table with summary statistics like
coverage, SNP rate, gaps and more is written to samplel.tsv. You can also specify to output this table to a TSV file
with the -s switch in the above command. There are more options for data output, it can output VCF files, BED tracks
and more, see the CLI reference documentation below.

You can recreate many of the additional data files from the HDFS file using straingr view.
3.3.3 Output files
StrainGR summary

Example output

ref name length coverage .
—UReads abundance median callable callablePct confirmed confirmedPct snps .
—snpPct multi multiPct lowmg lowmgPct high highPct gapCount gapLength

Esch_coli_H3 NZ_CP010167.1 4630919 0.247 18 .
— 0.000 0 281 0.006 275 97.865 6 2.135 0 .
-~ 0.000 308810 6.668 21045 0.454 13 447553

Esch_coli_H3 NZ_CP010168.1 48243 0.025 0 o
- 0.000 0 0 0.000 0 0.000 0 0.000 0 .
- 0.000 263 0.545 0 0.000 0 0

Esch_coli_NGF1 NZ_CP016007.1 5026105 3.549 85824,
- 0.823 3 2506998 49.880 2506921 99.997 77 0.003 70 .
-~ 0.003 1668501 33.197 3681 0.073 1 16868

Esch_coli_NGF1 NZ_CP016008.1 40158 6.942 2458 .
- 0.008 7 39096 97.355 39094 99.995 2 0.005 2 g
-~ 0.005 982 2.445 12 0.030 0 0

(continues on next page)

12 Chapter 3. Usage

StrainGE

(continued from previous page)

Esch_coli_NGF1 NZ_CP016009.1 8556 0.000 0 oo
- 0.000 0 0 0.000 0 0.000 0 0.000 O .
<~ 0.000 0 0.000 0 0.000 1 8556

Esch_coli_clone_D_il4 NC_017652.1 5038386 1.341 210
- 0.002 0 5022 0.100 5018 99.920 4 0.080 O .
- 0.000 1792289 35.573 196601 3.902 30 575694
Esch_coli_£974b26a-5e81-11e8-bf7f-3c4a9275d6c8 NZ_LR536430.1 4975029 0.224 49
— 0.000 0 548 0.011 548 100.000 0 0.000 O .
-~ 0.000 298901 6.008 18373 0.369 16 767577

Esch_coli_1190 NZ_CP023386.1 4900891 0.260 24
- 0.000 0 351 0.007 334 95.157 17 4.843 0 .
- 0.000 342936 6.997 24117 0.492 25 848801

Esch_coli_1190 NZ_CP023387.1 86147 0.000 0 -
< 0.000 0 0 0.000 0 0.000 0 0.000 O .
-~ 0.000 0 0.000 0 0.000 1 86147

TOTAL - 24754434 1.148 88583,
<~ 0.834 0 2552296 10.310 2552190 99.996 106 0.004 72 .
- 0.003 4412682 17.826 263829 1.066 87 2751196

Column descriptions

For each scaffold in the concatenated reference StrainGR outputs several metrics.

ref : original reference genome this scaffold belongs to
name: Scaffold name
length: Scaffold length

coverage: Average depth of coverage along this scaffold. includes multimapped reads, and multimapped
reads are counted multiple times (for each alternative alignment location)

uReads: Number of reads uniquely aligned to this scaffold

abundance: Estimated relative abundance of this scaffold. Calculated by dividing the number uniquely aligned
reads to this scaffold by the total number of reads uniquely aligned, normalized by the estimated repetitiveness
in the prepare-ref stage. Generally, we trust the abundances calculated by StrainGST a lot more.

median: median depth of coverage

callable (callablePct): Number (percentage) of positions in this scaffold with strong evidence for an allele (i.e.
two good reads supporting a single allele)

confirmed (confirmedPct): Number (percentage) of positions where there’s strong evidence for the reference
allele (does not exclude positions with multiple alleles).

snps (snpPct): Number (percentage) of positions with strong evidence for a single allele different than the
reference. Our best estimate of ANI.

multi (multiPct): Number (percentage) of positions with strong evidence for multiple alleles (whether it includes
the reference or not).

lowmgq (lowmgqPct): Number (percentage) of positions where the majority of reads are mapped with low mapping
quality, i.e. representing shared or repetitive regions.

high (highPct): Number (percentage) of positions with abnormally high coverage.

gapCount: Number of gaps predicted

3.3. Running StrainGR 13

StrainGE

* gapLength: Number of positions in the genome marked as gap

3.4 Comparing strains across samples

3.4.1 Prerequisites

* StrainGR call data (HDF? files) for the samples of interest

3.4.2 Comparing strains in different samples
Strains in different samples that match the same close reference genome can be compared in more detail (at the nu-
cleotide level) using StrainGR.

To compare strains run straingr compare:

straingr compare samplel.hdf5 sample2.hdf5 \
-0 samplel.vs.sample2.summary.tsv -d samplel.vs.sample2.details.tsv

straingr compare takes in two HDFS5 files as generated by straingr call, and the compares the base calls in each
sample for each scaffold in the concatenated reference. If different concatenated references were used for each sample,
only the scaffolds the two concatenated references have in common will be compared.

3.4.3 Output file description

Summary TSV

This file contains several metrics that summarizes the comparisons of each strain (scaffold).

Warning: this file currently contains a ton of metrics, several of which are slight variations on others. In the final
version of StrainGE we will likely remove a few and only keep the most relevant ones.

Columns:
» samplel, sample2: Sample names (from filename)
¢ ref: The name of the original reference this scaffold belongs to
* scaffold: scaffold name
* length: length of the scaffold
* common (commonPct): Number (percentage) of positions of this scaffold that’s callable in both samples

* single (singlePct): Number (percentage) of positions where both samples have a single strong call (i.e. no evi-
dence for multiple alleles)

* singleAgree (singleAgreePct): Number (percentage) of positions where both sample have single strong call, and
the base call is the same. singleAgreePct is the ACNI metric as described in the paper.

e sharedAlleles (sharedAllelesPct): Number (percentage) of positions where both samples share an allele. This
allows for positions to have multiple alleles, and at least one allele should match.

* variants (variantsPct): Number (percentage) of positions where either sample has an allele other than the refer-
ence.

* commonVariant (commonVariantPct): Number (percentage) of variants where both samples share an allele

14 Chapter 3. Usage

[2]:

StrainGE

e variantExact (variantExactPct): Number (percentage) of variants that are exactly the same in both samples
(including the same positions with multiple alleles).

* AnotB (AnotBPct): Number (percentage) of variants in Sample A but not in Sample B

* BnotA (BnotAPct): Number (percentage) of variants in Sample B but not in Sample A

* gapJaccardSimilarity: Jaccard similarity between samples of set of positions not marked as gap (i.e. analogous
to gene content similarity).

3.5 Analyze StrainGE output in Python

Now that we have run StrainGST and StrainGR (including the compare step), how do we analyze the outputs? This
page uses Python and its commonly used data science stack (NumPy, SciPy, Pandas and matplotlib+seaborn) to parse
the data, plot the relative abundances of strains over time, and generate an ACNI/gap similarity plot.

3.5.1 Download data

We download an archive containing StrainGE outputs part of the vignette described in the paper on the persistence
of an E. coli strain in the gut of a woman with recurrent urinary tract infections. The extracted data is organized in a
straingst and straingr folder.

Icurl --output umb_data.tar.gz https://raw.githubusercontent.com/broadinstitute/strainge-
—paper/master/umb/umb_data.tar.gz
Itar -xzvf umb_data.tar.gz

% Total

100 12196 100 12196

E T B - T - R - R I I T - T - - - - R - - B

straingst/UMB11_01.
straingst/UMB11_02.
straingst/UMB11_03.
straingst/UMB11_03.
straingst/UMB11_04.
straingst/UMB11_04.
straingst/UMB11_05.
straingst/UMB11_06.
straingst/UMB11_07.
straingst/UMB11_08.
straingst/UMB11_11.
straingst/UMB11_12.

straingr/UMB11_01.
straingr/UMB11_02.
straingr/UMB11_03.
straingr/UMB11_03.
straingr/UMB11_04.
straingr/UMB11_04.
straingr/UMB11_05.
straingr/UMB11_06.
straingr/UMB11_07.
straingr/UMB11_08.
straingr/UMB11_11.

0
tsv
tsv
1l.tsv
tsv
1l.tsv
tsv
tsv
tsv
tsv
tsv
tsv
tsv
tsv
tsv
1l.tsv
tsv
l.tsv
tsv
tsv
tsv
tsv
tsv
tsv

% Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

0 42347

0 —i1—-:1-- ——i1--i-- --i--:1-- 42347

(continues on next page)

3.5. Analyze StrainGE output in Python

15

[3]:

[16]:

[16]:

StrainGE

(continued from previous page)

X straingr/UMB11_12.tsv
X straingr/compare.summary.chrom.txt

3.5.2 Import required modules

from pathlib import Path

import numpy

import pandas

import matplotlib.pyplot as plt
from IPython.display import display

3.5.3 StrainGST

Read StrainGST outputs and combine it in a DataFrame

The TSV files written by StrainGST contain both sample statistics (the first two lines), and statistics for each identified
strain (see StrainGST page). In this tutorial, we are mainly interested in the identified strains. In the code below, when
calling pandas.read_csv, we give the argument skiprows=2 to skip the sample statistics.

STRAINGST_DIR = Path("straingst/")

df_list = []
sample_names = []
for £ in STRAINGST_DIR.glob("*.tsv"):
sample_name = f.stem
df = pandas.read_csv(f, sep='\t', comment='#', skiprows=2, index_col=1)

df_list.append(df)
sample_names. append (sample_name)

Combine all StrainGST results from each sample into a single DataFrame.
straingst_df = pandas.concat(df_list, keys=sample_names, names=["sample"])

sample_names = list(sorted(sample_names, key=lambda e: float(e.replace("UMBI1_", ""))))
straingst_df.sort_index()

[

gkmers ikmers \
sample strain

UMB11_01 Esch_coli_NGF1
UMB11_02 Esch_coli_NGF1
UMB11_03 Esch_coli_1190
UMB11_03.1 Esch_coli_1190
UMB11_04.1 Esch_coli_1190
UMB11_05 Esch_coli_1190
UMB11_06 Esch_coli_1190

Esch_coli_H3

49631 49622
49631 49623
48261 48249
48261 48254
48261 48250
48261 48248
48261 21600
45610 45560

(continues on next page)

(= — I — I — I — I —]

16 Chapter 3. Usage

StrainGE

UMB11_07

UMB11_08
UMB11_11
UMB11_12

sample

UMB11_01
UMB11_02
UMB11_03

UMB11_03.
UMB11_04.

UMB11_05
UMB11_06

UMB11_07

UMB11_08
UMB11_11
UMB11_12

sample

UMB11_01
UMB11_02
UMB11_03

UMB11_03.
UMB11_04.

UMB11_05
UMB11_06

UMB11_07

UMB11_08
UMB11_11
UMB11_12

sample

UMB11_01
UMB11_02
UMB11_03

UMB11_03.
UMB11_04.

UMB11_05
UMB11_06

UMB11_07

Esch_coli_1190 0 48261
Esch_coli_f974b26a-5e81-11e8-bf7f-3c4a9275d6c8 1 47727
Esch_coli_1190 0 48261
Esch_coli_1190 0 48261
Esch_coli_1190 0 48261
Esch_coli_26561 1 46249
skmers
strain
Esch_coli_NGF1 50090 O
Esch_coli_NGF1 5358 O
Esch_coli_1190 37144 0
Esch_coli_1190 31201 O
Esch_coli_1190 19042 ©
Esch_coli_1190 40411 ©
Esch_coli_1190 30714 O
Esch_coli_H3 74449 0
Esch_coli_1190 58276 ©
Esch_coli_f974b26a-5e81-11e8-bf7f-3c4a9275d6c8 17074 0
Esch_coli_1190 31599 O
Esch_coli_1190 49462 0
Esch_coli_1190 66509 0
Esch_coli_26561 21112 0
kcov
strain
Esch_coli_NGF1 7.009
Esch_coli_NGF1 1.546
Esch_coli_1190 2.814
Esch_coli_1190 2.152
Esch_coli_1190 1.870
Esch_coli_1190 2.741
Esch_coli_1190 7.102

Esch_coli_H3 114.343

Esch_coli_1190 4.557
Esch_coli_f974b26a-5e81-11e8-bf7£f-3c4a9275d6c8 2.588
Esch_coli_1190 2.243
Esch_coli_1190 6.107
Esch_coli_1190 9.061
Esch_coli_26561 4.773
acct

strain

Esch_coli_NGF1 0.980 O
Esch_coli_NGF1 0.932 ©®
Esch_coli_1190 0.926 0
Esch_coli_1190 0.918 ©
Esch_coli_1190 0.908 0
Esch_coli_1190 0.923 0
Esch_coli_1190 0.283 0
Esch_coli_H3 0.921 ©
Esch_coli_1190 0.803 ©

(continued from previous page)

48237
21265
48248
48248
48235
19738

cov \

.985
.103
.711
.595
.362
775
.794
.960
.854
.441
.592
.920
.941
.853

gcov \

VN, RO

.831
.158
.975
.264
.668
.097
.565

109.038

w oo V1 = = W

even \

.987
.707
.826
.830
.743
.884
.797
.960
.873

. 846
.077
.309
.545
.431
.983

(continues on next page)

3.5. Analyze StrainGE output in Python

17

StrainGE

(continued from previous page)

Esch_coli_£974b26a-5e81-11e8-bf7f-3c4a9275d6c8 0.526 0.668
UMB11_08 Esch_coli_1190 0.904 0.810
UMB11_11 Esch_coli_1190 0.920 0.923
UMB11_12 Esch_coli_1190 0.800 0.941
Esch_coli_26561 0.780 0.869
spec rapct \
sample strain
UMB11_01 Esch_coli_NGF1 1.000 1.536
UMB11_02 Esch_coli_NGF1 1.032 0.048
UMB11_03 Esch_coli_1190 0.972 0.395
UMB11_03.1 Esch_coli_1190 1.030 0.711
UMB11_04.1 Esch_coli_1190 1.047 0.135
UMB11_05 Esch_coli_1190 0.967 0.484
UMB11_06 Esch_coli_1190 0.552 1.005
Esch_coli_H3 0.976 16.420
UMB11_07 Esch_coli_1190 0.794 0.411
Esch_coli_£974b26a-5e81-11e8-bf7f-3c4a9275d6c8 1.012 0.613
UMB11_08 Esch_coli_1190 0.980 0.315
UMB11_11 Esch_coli_1190 0.965 1.180
UMB11_12 Esch_coli_1190 0.734 0.978
Esch_coli_26561 0.968 1.548
old_rapct wscore \
sample strain
UMB11_01 Esch_coli_NGF1 1.505 0.940
UMB11_02 Esch_coli_NGF1 0.045 0.047
UMB11_03 Esch_coli_1190 0.366 0.437
UMB11_03.1 Esch_coli_1190 0.652 0.365
UMB11_04.1 Esch_coli_1190 0.122 0.173
UMB11_05 Esch_coli_1190 0.447 0.540
UMB11_06 Esch_coli_1190 0.391 0.079
Esch_coli_H3 16.042 0.795
UMB11_07 Esch_coli_1190 0.822 0.415
Esch_coli_£974b26a-5e81-11e8-bf7f-3c4a9275d6c8 0.106 0.102
UMB11_08 Esch_coli_1190 0.285 0.344
UMB11_11 Esch_coli_1190 1.086 0.696
UMB11_12 Esch_coli_1190 2.020 0.489
Esch_coli_26561 0.395 0.486
score
sample strain
UMB11_01 Esch_coli_NGF1 0.940
UMB11_02 Esch_coli_NGF1 0.048
UMB11_03 Esch_coli_1190 0.449
UMB11_03.1 Esch_coli_1190 0.376
UMB11_04.1 Esch_coli_1190 0.182
UMB11_05 Esch_coli_1190 0.558
UMB11_06 Esch_coli_1190 0.142
Esch_coli_H3 0.814
UMB11_07 Esch_coli_1190 0.522
Esch_coli_f974b26a-5e81-11e8-bf7£f-3c4a9275d6c8 0.103
(continues on next page)
18 Chapter 3. Usage

[5]:

StrainGE

(continued from previous page)

UMB11_08 Esch_coli_1190 0.351
UMB11_11 Esch_coli_1190 0.721
UMB11_12 Esch_coli_1190 0.667

Esch_coli_26561 0.502

Plot relative abundances

plt.figure(figsize=(6, 4))

strain_order = ['Esch_coli_1190', 'Esch_coli_H3', 'Esch_coli_NGF1', 'Esch_coli_f974b26a-
—5e81-11e8-bf7£f-3c4a9275d6c8"', "Esch_coli_26561"]

strain_labels = ['1190', 'H3', 'NGFl', 'f974b26a...', "26561"]

xlabels = [s.replace("UMB11_", "") for s in sample_names]

X = numpy.arange(len(sample_names))
bottom = numpy.zeros((len(sample_names),))
for ref, label in zip(strain_order, strain_labels):
Create an array with all relative abundances for the current reference in each.,
—»sample. If not available, set to zero.
rel_abun = numpy.array([
straingst_df.loc[(sample, ref), 'rapct'] if (sample, ref) in straingst_df.index.
—else 0.0
for sample in sample_names

D

plt.bar(x, rel_abun, bottom=bottom, tick_label=xlabels, label=1abel, width=0.8)
bottom += rel_abun

plt.xlabel("Sample (time point)")

plt.ylabel("Relative abundance")

plt.gca() .yaxis.set_major_formatter("{x:g}/%")

plt.legend(title="Strain", loc="center left", bbox_to_anchor=(1.05, 0.5), ncol=2)

plt.show()

16% 1
14% 4

12% 1
Strain

. 1190 mm 974b26a...

g% mm H3 26561

mm NGFL

10% 1

Relative abundance

45

2%

01 02 03 031 ¥ M1 02 06 07 B 11 1z
Sample (time point)

3.5. Analyze StrainGE output in Python 19

[28]:

[28]:

StrainGE

3.5.4 StrainGR

Load call data in a DataFrame

To load StrainGR outputs, we use a similar approach as descried above. In this case, the StrainGR TSV files can be

directly loaded with pandas without skiprows.

One thing to note, StrainGR outputs metrics for every contig in the concatenated reference used for alignment. The
output file thus contains metrics for contigs from strains that were not predicted to be present by StrainGST. We
use the presence/absence predictions of StrainGST as our “truth” and remove the contigs from strains that weren’t

present.

We apply a few other filters, including removing plasmid contigs, and contigs with less coverage than 0.5x.

STRAINGR_DIR = Path("straingr/")

df_list = []
sample_names = []
for £ in STRAINGR_DIR.glob("*.tsv"):
df = pandas.read_csv(f, sep="\t', index_col=0)
df = df.drop(index="TOTAL') # Remove TOTAL statistics

df_list.append(df)
sample_names.append(f.stem)

straingr_df = pandas.concat(df_list, keys=sample_names, names=["sample"])
straingr_df['straingst_present'] = straingr_df.index.map(lambda ix: ix in straingst_df.

—index)
straingr_df['is_plasmid'] straingr_df['length'] < 4e6
straingr_df['enough_cov'] = straingr_df['coverage'] > 0.5

Filter and re-index

straingr_df = straingr_df[straingr_df['straingst_present'] & ~straingr_df['is_plasmid'] &
—, straingr_df['enough_cov']].reset_index().set_index(['sample', 'ref'

straingr_df

sample ref

UMB11_11 Esch_coli_1190

UMB11_06 Esch_coli_H3
Esch_coli_1190

UMB11_07 Esch_coli_£974b26a-5e81-11e8-bf7£f-3c4a9275d6c8
Esch_coli_1190

UMB11_03 Esch_coli_1190

UMB11_01 Esch_coli_NGF1

UMB11_03.1 Esch_coli_1190

UMB11_08 Esch_coli_1190

sample ref

UMB11_11 Esch_coli_1190

UMB11_06 Esch_coli_H3
Esch_coli_1190

UMB11_07 Esch_coli_£974b26a-5e81-11e8-bf7f-3c4a9275d6c8
Esch_coli_1190

D

name \

NZ_CP023386.
NZ_CP010167.
NZ_CP023386.
NZ_LR536430.
NZ_CP023386.
NZ_CP023386.
NZ_CP016007.
NZ_CP023386.
NZ_CP023386.

length co

4900891
4630919
4900891
4975029
4900891

S T T T T | T

verage \

2.492
47.519
1.963
0.700
1.591

(continues on next page)

20

Chapter 3. Usage

StrainGE

UMB11_03 Esch_coli_1190
UMB11_01 Esch_coli_NGF1
UMB11_03.1 Esch_coli_1190
UMB11_08 Esch_coli_1190

sample ref

UMB11_11 Esch_coli_1190

UMB11_06 Esch_coli_H3
Esch_coli_1190

UMB11_07 Esch_coli_£974b26a-5e81-11e8-bf7f-3c4a9275d6c8
Esch_coli_1190

UMB11_03 Esch_coli_1190

UMB11_01 Esch_coli_NGF1

UMB11_03.1 Esch_coli_1190

UMB11_08 Esch_coli_1190

sample ref

UMB11_11 Esch_coli_1190

UMB11_06 Esch_coli_H3
Esch_coli_1190

UMB11_07 Esch_coli_£974b26a-5e81-11e8-bf7f-3c4a9275d6c8
Esch_coli_1190

UMB11_03 Esch_coli_1190

UMB11_01 Esch_coli_NGF1

UMB11_03.1 Esch_coli_1190

UMB11_08 Esch_coli_1190

sample ref

UMB11_11 Esch_coli_1190

UMB11_06 Esch_coli_H3
Esch_coli_1190

UMB11_07 Esch_coli_£974b26a-5e81-11e8-bf7f-3c4a9275d6c8
Esch_coli_1190

UMB11_03 Esch_coli_1190

UMB11_01 Esch_coli_NGF1

UMB11_03.1 Esch_coli_1190

UMB11_08 Esch_coli_1190

sample ref

UMB11_11 Esch_coli_1190

UMB11_06 Esch_coli_H3
Esch_coli_1190

UMB11_07 Esch_coli_f974b26a-5e81-11e8-bf7f-3c4a9275d6c8
Esch_coli_1190

UMB11_03 Esch_coli_1190

UMB11_01 Esch_coli_NGF1

UMB11_03.1 Esch_coli_1190

UMB11_08 Esch_coli_1190

4900891
5026105
4900891
4900891

uReads

106232
1331869
69465
14686
59112
35131
85824
24708
24145

median

2
48

2
0
1
1
3
0
0

(continued from previous page)

0.822
3.549
0.596
0.580

abundance \

@D XN

. 449
.902
.264
.132
.347
.143
.823
.278
.118

callable \

2819899
3863102
1515111
378975
1894740
859998
2506998
547015
505713

callablePct \

57.
.420
30.

7.
38.
17.
49.
.162
10.

83

11

538

915
618
661
548
880

319

confirmed \

2818902
3861892
1513886
377743
1893628
859671
2506921
546816
505494

(continues on next page)

3.5. Analyze StrainGE output in Python

21

StrainGE

(continued from previous page)

confirmedPct ... \
sample ref
UMB11_11 Esch_coli_1190 99.965
UMB11_06 Esch_coli_H3 99.969
Esch_coli_1190 99.919
UMB11_07 Esch_coli_£974b26a-5e81-11e8-bf7f-3c4a9275d6c8 99.675
Esch_coli_1190 99.941
UMB11_03 Esch_coli_1190 99.962
UMB11_01 Esch_coli_NGF1 99.997
UMB11_03.1 Esch_coli_1190 99.964
UMB11_08 Esch_coli_1190 99.957
multiPct lowmgq \
sample ref
UMB11_11 Esch_coli_1190 0.004 435239
UMB11_06 Esch_coli_H3 0.004 1439048
Esch_coli_1190 0.015 1161951
UMB11_07 Esch_coli_£974b26a-5e81-11e8-bf7f-3c4a9275d6c8 0.013 495996
Esch_coli_1190 0.010 323110
UMB11_03 Esch_coli_1190 0.001 160054
UMB11_01 Esch_coli_NGF1 0.003 1668501
UMB11_03.1 Esch_coli_1190 0.001 99001
UMB11_08 Esch_coli_1190 0.001 115822

lowmgPct high \

sample ref
UMB11_11 Esch_coli_1190 8.881 488
UMB11_06 Esch_coli_H3 31.075 84996
Esch_coli_1190 23.709 699045
UMB11_07 Esch_coli_f974b26a-5e81-11e8-bf7f-3c4a9275d6c8 9.970 17165
Esch_coli_1190 6.593 3384
UMB11_03 Esch_coli_1190 3.266 26
UMB11_01 Esch_coli_NGF1 33.197 3681
UMB11_03.1 Esch_coli_1190 2.020 114
UMB11_08 Esch_coli_1190 2.363 64

highPct gapCount \

sample ref
UMB11_11 Esch_coli_1190 0.010 9
UMB11_06 Esch_coli_H3 1.835 9
Esch_coli_1190 14.264 9
UMB11_07 Esch_coli_£974b26a-5e81-11e8-bf7f-3c4a9275d6c8 0.345 17
Esch_coli_1190 0.069 12
UMB11_03 Esch_coli_1190 0.001 9
UMB11_01 Esch_coli_NGF1 0.073 1
UMB11_03.1 Esch_coli_1190 0.002 7
UMB11_08 Esch_coli_1190 0.001 6

gapLength \
sample ref
UMB11_11 Esch_coli_1190 165998

(continues on next page)

22 Chapter 3. Usage

StrainGE

UMB11_06

UMB11_07

UMB11_03
UMB11_01

UMB11_03.

UMB11_08

sample
UMB11_11
UMB11_06

UMB11_07

UMB11_03
UMB11_01

UMB11_03.

UMB11_08

sample
UMB11_11
UMB11_06

UMB11_07

UMB11_03
UMB11_01

UMB11_03.

UMB11_08

sample
UMB11_11
UMB11_06

UMB11_07

UMB11_03
UMB11_01

UMB11_03.

UMB11_08

Esch_coli_H3
Esch_coli_1190

Esch_coli_£974b26a-5e81-11e8-bf7f-3c4a9275d6c8

Esch_coli_1190
Esch_coli_1190
Esch_coli_NGF1
Esch_coli_1190
Esch_coli_1190

ref
Esch_coli_1190
Esch_coli_H3
Esch_coli_1190

Esch_coli_£974b26a-5e81-11e8-bf7f-3c4a9275d6c8

Esch_coli_1190
Esch_coli_1190
Esch_coli_NGF1
Esch_coli_1190
Esch_coli_1190

ref
Esch_coli_1190
Esch_coli_H3
Esch_coli_1190

Esch_coli_f974b26a-5e81-11e8-bf7f-3c4a9275d6c8

Esch_coli_1190
Esch_coli_1190
Esch_coli_NGF1
Esch_coli_1190
Esch_coli_1190

ref
Esch_coli_1190
Esch_coli_H3
Esch_coli_1190

Esch_coli_f974b26a-5e81-11e8-b£f7f-3c4a9275d6c8

Esch_coli_1190
Esch_coli_1190
Esch_coli_NGF1
Esch_coli_1190
Esch_coli_1190

[9 rows x 23 columns]

120001
165099
347002
171056
185085

16868
172806
158445

(continued from previous page)

straingst_present

is_plasmid

False
False
False
False
False
False
False
False
False

enough_cov

True
True
True
True
True
True
True
True
True

\

True
True
True
True
True
True
True
True
True

3.5. Analyze StrainGE output in Python

23

[27]:

[27]:

StrainGE

Load compare data in a DataFrame

The above data mainly contains data per sample of individual strains as compared to its closest reference. In general, we
are often more interested how strains in each sample relate to each other. These kind of relationships are computed with
the straingr compare command. Here, we load the data from compare, make sure we only include comparisons

between strains that were predicted to be present by StrainGST, and plot the ACNI/gap similarity.

compare_df = pandas.read_csv(STRAINGR_DIR / "compare.summary.chrom.txt", sep='\t', index_

—col=[0,

1, 2D

def both_straingst_present(ix):
samplel, sample2, ref = ix

return (samplel, ref) in straingr_df.index and (sample2, ref) in straingr_df.index

compare_df['both_present'] = compare_df.index.map(both_straingst_present)

compare_df = compare_df[compare_df['both_present']].copy()

compare_df
scaffold length common \
samplel sample?2 ref
UMB11_03 UMB11_03.1 Esch_coli_1190 NZ_CP023386.1 4900891 126732
UMB11_06 Esch_coli_ 1190 NZ_CP023386.1 4900891 336010
UMB11_07 Esch_coli_1190 NZ_CP023386.1 4900891 405110
UMB11_08 Esch_coli_1190 NZ_CP023386.1 4900891 117635
UMB11_11 Esch_coli_1190 NZ_CP023386.1 4900891 611275
UMB11_03.1 UMB11_06 Esch_coli_ 1190 NZ_CP023386.1 4900891 215863
UMB11_07 Esch_coli_ 1190 NZ_CP023386.1 4900891 252557
UMB11_08 Esch_coli_ 1190 NZ_CP023386.1 4900891 75899
UMB11_11 Esch_coli_1190 NZ_CP023386.1 4900891 390913
UMB11_06 UMB11_07 Esch_coli_ 1190 NZ_CP023386.1 4900891 718395
UMB11_08 Esch_coli_1190 NZ_CP023386.1 4900891 199668
UMB11_11 Esch_coli_ 1190 NZ_CP023386.1 4900891 1059446
UMB11_07 UMB11_08 Esch_coli_1190 NZ_CP023386.1 4900891 235328
UMB11_11 Esch_coli_1190 NZ_CP023386.1 4900891 1284089
UMB11_08 UMB11_11 Esch_coli_ 1190 NZ_CP023386.1 4900891 358765
commonPct single singlePct \
samplel sample?2 ref
UMB11_03 UMB11_03.1 Esch_coli_1190 2.5859 126732 100.0000
UMB11_06 Esch_coli_1190 6.8561 335954 99.9833
UMB11_07 Esch_coli_1190 8.2660 405067 99.989%4
UMB11_08 Esch_coli_1190 2.4003 117635 100.0000
UMB11_11 Esch_coli_1190 12.4727 611224 99.9917
UMB11_03.1 UMB11 06 Esch_coli_ 1190 4.4046 215823 99.9815
UMB11_07 Esch_coli_1190 5.1533 252524 99.9869
UMB11_08 Esch_coli_1190 1.5487 75897 99.9974
UMB11_11 Esch_coli_1190 7.9764 390894 99.9951
UMB11_06 UMB11_07 Esch_coli_1190 14.6585 718228 99.9768
UMB11_08 Esch_coli_1190 4.0741 199626 99.9790
UMB11_11 Esch_coli_1190 21.6174 1059249 99.9814
UMB11_07 UMB11_08 Esch_coli_1190 4.8017 235291 99.9843
UMB11_11 Esch_coli_1190 26.2011 1283913 99.9863
(continues on next page)
24 Chapter 3. Usage

StrainGE

(continued from previous page)

UMB11_08 UMB11_11 Esch_coli_1190 7.3204 358752 99.9964

singleAgree singleAgreePct \

samplel sample?2 ref
UMB11_03 UMB11_03.1 Esch_coli_1190 126725 99.9945
UMB11_06 Esch_coli_1190 335809 99.9568
UMB11_07 Esch_coli_1190 405023 99.9891
UMB11_08 Esch_coli_1190 117629 99.9949
UMB11_11 Esch_coli_1190 611203 99.9966
UMB11_03.1 UMB11_06 Esch_coli_1190 215758 99.9699
UMB11_07 Esch_coli_1190 252490 99.9865
UMB11_08 Esch_coli_1190 75894 99.9960
UMB11_11 Esch_coli_1190 390880 99.9964
UMB11_06 UMB11_07 Esch_coli_1190 717916 99.9566
UMB11_08 Esch_coli_1190 199556 99.9649
UMB11_11 Esch_coli_1190 1058911 99.9681
UMB11_07 UMB11_08 Esch_coli_1190 235271 99.9915
UMB11_11 Esch_coli_1190 1283763 99.9883
UMB11_08 UMB11_11 Esch_coli_1190 358744 99.9978
sharedAlleles sharedAllelesPct ... \
samplel sample?2 ref
UMB11_03 UMB11_03.1 Esch_coli_1190 126725 99.9945
UMB11_06 Esch_coli_1190 335865 99.9568
UMB11_07 Esch_coli_1190 405066 99.9891
UMB11_08 Esch_coli_1190 117629 99.9949
UMB11_11 Esch_coli_1190 611254 99.9966
UMB11_03.1 UMB11_06 Esch_coli_1190 215798 99.9699
UMB11_07 Esch_coli_1190 252523 99.9865
UMB11_08 Esch_coli_1190 75896 99.9960
UMB11_11 Esch_coli_1190 390899 99.9964
UMB11_06 UMB11_07 Esch_coli_1190 718083 99.9566
UMB11_08 Esch_coli_1190 199598 99.9649
UMB11_11 Esch_coli_1190 1059108 99.9681
UMB11_07 UMB11_08 Esch_coli_1190 235308 99.9915
UMB11_11 Esch_coli_1190 1283939 99.9883
UMB11_08 UMB11_11 Esch_coli_1190 358757 99.9978
BnotAweak BnotAweakPct Agaps \
samplel sample?2 ref
UMB11_03 UMB11_03.1 Esch_coli_1190 5 17.8571 185085
UMB11_06 Esch_coli_1190 160 57.3477 185085
UMB11_07 Esch_coli_1190 65 32.5000 185085
UMB11_08 Esch_coli_1190 2 3.8462 185085
UMB11_11 Esch_coli_1190 29 11.9835 185085
UMB11_03.1 UMB11_06 Esch_coli_1190 95 71.4286 172806
UMB11_07 Esch_coli_1190 56 43.0769 172806
UMB11_08 Esch_coli_1190 2 10.0000 172806
UMB11_11 Esch_coli_1190 14 14.0000 172806
UMB11_06 UMB11_07 Esch_coli_1190 151 22.1083 165099
UMB11_08 Esch_coli_1190 18 11.1111 165099
UMB11_11 Esch_coli_1190 50 6.2500 165099

(continues on next page)

3.5. Analyze StrainGE output in Python 25

StrainGE

(continued from previous page)

UMB11_07 UMB11_08 Esch_coli_1190 6 5.1724 171056
UMB11_11 Esch_coli_1190 26 3.8981 171056
UMB11_08 UMB11_11 Esch_coli_1190 5 3.6765 158445
AsharedGaps AgapPct Bgaps \
samplel sample?2 ref
UMB11_03 UMB11_03.1 Esch_coli_1190 163905 88.5566 172806
UMB11_06 Esch_coli_1190 163905 88.5566 165099
UMB11_07 Esch_coli_1190 175075 94.5917 171056
UMB11_08 Esch_coli_1190 145541 78.6347 158445
UMB11_11 Esch_coli_1190 185085 100.0000 165998
UMB11_03.1 UMB11_06 Esch_coli_1190 172806 100.0000 165099
UMB11_07 Esch_coli_1190 172806 100.0000 171056
UMB11_08 Esch_coli_1190 148091 85.6978 158445
UMB11_11 Esch_coli_1190 172806 100.0000 165998
UMB11_06 UMB11_07 Esch_coli_1190 158136 95.7825 171056
UMB11_08 Esch_coli_1190 151355 91.6753 158445
UMB11_11 Esch_coli_1190 158136 95.7825 165998
UMB11_07 UMB11_08 Esch_coli_1190 131119 76.6527 158445
UMB11_11 Esch_coli_1190 154895 90.5522 165998
UMB11_08 UMB11_11 Esch_coli_1190 146928 92.7312 165998
BsharedGaps BgapPct gapJaccardSim \
samplel sample?2 ref
UMB11_03 UMB11_03.1 Esch_coli_1190 172806 100.0000 0.9919
UMB11_06 Esch_coli_1190 158136 95.7825 0.9895
UMB11_07 Esch_coli_1190 154895 90.5522 0.9872
UMB11_08 Esch_coli_1190 146928 92.7312 0.9971
UMB11_11 Esch_coli_1190 165998 100.0000 0.9889
UMB11_03.1 UMB11_06 Esch_coli_1190 158136 95.7825 0.9922
UMB11_07 Esch_coli_1190 148033 86.5407 0.9879
UMB11_08 Esch_coli_1190 146928 92.7312 0.9916
UMB11_11 Esch_coli_1190 154893 93.3102 0.9916
UMB11_06 UMB11_07 Esch_coli_1190 148033 86.5407 0.9898
UMB11_08 Esch_coli_1190 158445 100.0000 0.9951
UMB11_11 Esch_coli_1190 154893 93.3102 0.9964
UMB11_07 UMB11_08 Esch_coli_1190 146928 92.7312 0.9909
UMB11_11 Esch_coli_1190 160523 96.7018 0.9900
UMB11_08 UMB11_11 Esch_coli_1190 139943 84.3040 0.9945
both_present
samplel sample?2 ref
UMB11_03 UMB11_03.1 Esch_coli_1190 True
UMB11_06 Esch_coli_1190 True
UMB11_07 Esch_coli_1190 True
UMB11_08 Esch_coli_1190 True
UMB11_11 Esch_coli_1190 True
UMB11_03.1 UMB11_06 Esch_coli_1190 True
UMB11_07 Esch_coli_1190 True
UMB11_08 Esch_coli_1190 True
UMB11_11 Esch_coli_1190 True
UMB11_06 UMB11_07 Esch_coli_1190 True
(continues on next page)
26 Chapter 3. Usage

[41]:

[41]:

StrainGE

UMB11_08 Esch_coli_1190 True
UMB11_11 Esch_coli_1190 True
UMB11_07 UMB11_08 Esch_coli_1190 True
UMB11_11 Esch_coli_1190 True
UMB11_08 UMB11_11 Esch_coli_1190 True

[15 rows x 32 columns]

import seaborn

(continued from previous page)

seaborn.scatterplot(x="gapJaccardSim", y="singleAgreePct", size="commonPct",.

—.data=compare_df)

plt.x1im(0.970, 1.0)
plt.xlabel("Gap similarity")

plt.ylim(99.9, 100)
plt.ylabel ("ACNI")

plt.gca() .yaxis.set_major_formatter(" %")

plt.grid('on')

plt.legend(title="Common\nCallable [%]", loc="center left", bbox_to_anchor=(1.05, 0.5))

<matplotlib.legend.Legend at 0x160142700>

100% =

99.98% 1

99.96% 1

ACHI

99.94% 1

99.92% 1

99.9% T T T T T
0970 0975 0980 0.985 0930 0995 1000

Gap similarity

Common

Callable [%]

208 e

5

10
15
20
25

3.5. Analyze StrainGE output in Python

27

StrainGE

28 Chapter 3. Usage

CHAPTER
FOUR

CITATION

If you use StrainGE in your project, please consider citing our publication:

Dijk, Lucas R. van, Bruce J. Walker, Timothy J. Straub, Colin J. Worby, Alexandra Grote, Henry L.
Schreiber, Christine Anyansi, et al. 2022. “StrainGE: A Toolkit to Track and Characterize Low-Abundance
Strains in Complex Microbial Communities.” Genome Biology 23 (1): 74. https://doi.org/10.1186/
$13059-022-02630-0.

29

https://doi.org/10.1186/s13059-022-02630-0
https://doi.org/10.1186/s13059-022-02630-0

StrainGE

30 Chapter 4. Citation

CHAPTER
FIVE

INDICES AND TABLES

* genindex
* modindex

¢ search

31

	A toolkit to track and characterize low-abundance strains using metagenomic data
	Installation
	Install through pip
	Install from bioconda
	Install manually from github

	Usage
	StrainGST database creation
	1. Download high quality reference genomes for your genus/species of interest
	2. K-merize your reference sequences
	3. Compare the k-mer sets and cluster similar references
	4. Create pan-genome k-mer database

	Running StrainGST
	Prerequisites
	Usage
	1. K-merize the sample reads
	2. Run StrainGST

	Output file description
	Example output (single file output)
	Example output (separate file output; new in version 1.3)
	Sample statistics
	Reference strain statistics

	Tips and Tricks

	Running StrainGR
	Prerequisites
	Usage
	1. Prepare a concatenated reference FASTA with straingr prepare-ref
	2. Align reads to the reference
	3. Analyze read alignments to call variants

	Output files
	StrainGR summary
	Example output
	Column descriptions

	Comparing strains across samples
	Prerequisites
	Comparing strains in different samples
	Output file description
	Summary TSV

	Analyze StrainGE output in Python
	Download data
	Import required modules
	StrainGST
	Read StrainGST outputs and combine it in a DataFrame
	Plot relative abundances

	StrainGR
	Load call data in a DataFrame
	Load compare data in a DataFrame

	Citation
	Indices and tables

